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This paper is concerned with the dynamics of disordered periodic structures. The free
vibration problem is considered. A method akin to the Rayleigh method is presented. This
method is particularly suitable for the study of periodic structures as it exploits the nominal
periodicity leading to an approximation that greatly reduces the order of the model. The
method is used to calculate the natural frequencies and mode shapes for a pass-band by
treating the unknown phases between the nominally identical bays as the generalized
co-ordinates of the problem. An illustrative example of a cyclically coupled beam model is
presented. In spite of a very large reduction in the computational effort, the results obtained
are very accurate both for frequencies and mode shapes even when strong mode localization
is observed. To test the performance of the proposed approximation further, a situation
where two pass-bands are brought close to each other is considered (a coupled beam model
having inherent bending-torsion coupling). The method presented here is general in its
formulation and has the potential of being used for more complex geometries.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Many engineering structures exhibit nearly periodic geometry. They constitute two main
classes. First, there are those that possess translational periodicity such as those found in
truss beams, multi-span beams, large space structures, etc. In this case, the structural
geometry repeats itself as the position is shifted along the direction of periodicity.
A structural unit that repeats itself is often referred to as a bay. The second category is that
of structures that are rotationally periodic—bladed disc assemblies such as those found in
turbo-machinery or, web-like structures with rotational periodicity as found in many
domes, spacecrafts, etc., are examples. In the case of rotational periodicity, the geometry of
a sector is found to repeat itself at regular angular intervals as one rotates around the centre
of symmetry. This paper is concerned with the free vibration behaviour of this latter class of
periodic structures. The terms “sector” or “bay” are used synonymously.

Periodic structures possess a characteristic eigenstructure associated with free vibration.
They are characterized by unattenuated propagating waves in frequency pass-bands and
attenuated standing waves in frequency stop-bands. The free vibration natural frequencies
occur in pass-bands with corresponding periodic or extended mode shapes [1].

A rotationally periodic structure that does not have any amount of disorder is often
called a tuned system. It is well known that the solution to the problem of tuned systems
requires analysis of only one bay or sector. For a tuned system, the modal amplitude of each
bay is identical and the inter-bay phase depends on the particular mode in question. When
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the assembly is mistuned, a particular mode may be “localized”. This means that the mode
shape is such that the spatial variation of amplitude for different sectors is not uniform and
one (or a few) bay(s) may have appreciably large amplitude relative to the rest. The
amplitude decays exponentially away from the most-active region (i.e., bay or sector). This
phenomenon is known as mode localization. Real structures are seldom perfectly tuned
since manufacturing and material variations are inevitable, and variations do occur during
service. Therefore, this interesting problem is also a very practical one.

The localization phenomenon was first studied by Anderson [2] in the context of
solid-state physics. Crystal lattices are examples of periodic structures and impurities bring
in disorder. The difficulty in the context of solid-state physics is that most real problems are
not one dimensional. On the other hand many engineering problems show truly
one-dimensional periodicity. Hodges [3] was perhaps the first to study Anderson
localization in engineering vibration and structural acoustics. Since this seminal work, the
problem has attracted the attention of many researchers [4, 5]. For a review of
developments on the effects of mistuning on mode localization in periodic structures, see
references [6-8]. Perturbation methods [5, 9, 10], wave propagation and transfer matrix
methods [7, 11-13] have been extensively used to study disordered periodic systems.

This work is motivated by the need to understand the dynamics of turbine blade
assemblies. There are several mathematical idealizations for these structures in the
literature. Single-degree-of-freedom models for each blade have been used in references [9,
10]. Afolabi [14] has used a lumped parameter model for the idealization of a blade and
a receptance analysis to study bladed disc assemblies. A finite element discretization has
been used to represent the individual blades in reference [15]. Various coupled oscillator
models of different sophistication have been developed in reference [ 16] for the modelling of
turbomachinery rotors.

Beside these, component mode synthesis methods are also widely used to study coupled
component structural systems [17, 18]. These methods consist essentially of a separate
determination of the modes of each component followed by a synthesis of the entire system
modes. This is convenient when the number of generalized co-ordinates is to be reduced.
Modelling the interface between the coupled components of a complex structural system
remains difficult. Apart from these methods, the U-transformation technique [19] has been
used to analyze nearly cyclic periodic and linear structures and applied to investigate the
mode localization phenomena.

For a tuned system, computational simplification results from a known spatial phase
relationship among the bays or the sectors in a normal mode, as will be discussed in the next
section. However, when each subsystem accounts for a considerable number of degrees of
freedom and mistuning is to be included in the analysis, the computational cost is high since
the full dynamic problem must be solved. The computational analysis becomes even more
expensive when one is interested in the system’s sensitivity to mode localization and
accurate statistics are needed. The direct calculation for a large number of random
realizations affords exact answers but it requires a large number of repeated calculations
each of which is expensive. Various statistical or probabilistic approaches have been
developed and applied to such structural systems involving parameter uncertainties. A
review of this class of problems can be found in reference [6].

An important step forward had been made in reference [20] to tackle the problem of
order reduction for the analysis of mistuned blade assemblies. The reduced-order technique
introduced by Castanier et al. is based on an FE model of a single disc-blade sector
followed by component mode synthesis which leads to a considerable order reduction
compared to the original FE model. Its principal advantage is the considerable
computational saving compared to solving the dynamic response of the entire mistuned
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system for a full industrial turbo-machinery rotor FE model with a reduced set of degrees of
freedom [21]. This reduced-order modelling was first applied to unshrouded bladed disc
assemblies and has been extended to turbomachinery with shrouded blades [22]. The
method achieves model-order reduction by representing each sector by fewer degrees of
freedom than those in the original problem.

While there are elaborate structural models of sufficient complexity on one hand, and
simple models having a few degrees of freedom per bay on the other hand; accurate and
inexpensive approximations are desirable when each bay is represented by several degrees
of freedom. The present work is inspired by this need. A method that employs a judicious
choice of the generalized co-ordinates is presented and this has the effect of reducing the size
of the problem dramatically while incorporating all the structural complexity and achieving
good accuracy. The effects of the separation between two neighbouring pass-bands on the
accuracy of the approximation is also explored.

The paper is laid out as follows. Spatial phase relations for normal modes of tuned
periodic systems are discussed in the next section. Based on the discussions in section 2,
a method for calculating modal parameters (natural frequencies and mode shapes) for
a particular pass-band is presented in section 3. The method is applicable to mistuned
systems as well as tuned systems and is based on treating values of the inter-bay phase as the
appropriate generalized co-ordinates. It is applied to a specific example of coupled beam
model in section 4. Two cases are considered—when bending and torsion are decoupled due
to cross-sectional symmetry and when this coupling exists due to asymmetry of the
cross-section. Concluding remarks are given in section 5.

2. INTER-BAY PHASE RELATIONSHIPS FOR CYCLICALLY PERIODIC STRUCTURES

When a periodic cyclic structure is tuned, the phase angle between two adjacent sectors
for each mode is known and by modelling just one sector of the geometry, the behaviour of
the whole structure can be determined. The mode shapes of the whole structure can be
obtained by using these phases. The inter-bay phase is given by o = 2n(i — 1)/p,i=1,...,p
where p is the number of sectors in the structure and i is the mode number within
a pass-band. The mode shapes, for the entire structure passing from one bay to another, are
calculated by accounting for this specified phase variation. Note that the term “phase” here
refers to the spatial phase variation observed within the deformed shape of a normal mode
of the complete structure—it is not the temporal phase during motion. In a normal mode
motion, all the material points in the structure will, of course, be in phase or out of phase by
definition. The inter-bay phase information for strictly periodic systems is given by the
eigenvectors of a circulant matrix of the same size as the number of sectors (i.e., p). This
matrix is known as the Fourier matrix [23].

In the absence of any coupling, there will be as many degenerate modes as the number
of sectors (or bays). These modes have identical natural frequencies associated with
them since the Rayleigh quotient of the whole system will be the same for each degenerate
mode.

When weak coupling is introduced, the degeneracy breaks down and the Rayleigh
quotient of the whole structure is slightly different for each mode shape that originally
corresponded to the degenerate set. For example, if the coupling is provided by a light
spring, the numerator of the Rayleigh quotient will slightly increase due to the spring
contribution—this manifests in a slight increase in all the natural frequencies (except the
lowest one in each pass-band for which the corresponding mode shape is such that the
spring does not compress or stretch). This means that the corresponding natural frequencies
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are now slightly different (in fact, increased) for each perturbed mode. The set of these
slightly different frequencies is the so-called pass-band that corresponds to what was
a single frequency of the order of the number of bays.

The number of pass-bands equals the number of degrees of freedom required to represent
the motion of each sector: if for example, in a finite element formulation, one has ¢ number
of degrees of freedom, in principle one could calculate natural frequencies for ¢ number of
pass-bands. It proves to be convenient to refer to a particular mode for the complete system
by referring to the relevant pass-band number and the mode number within this pass-band
(the numbering for modes starts with 1 within each pass-band). The generic shape for each
sector for a particular pass-band is the same when the system is tuned. For example, if one
thinks of each sector being represented by a beam having light coupling springs at the tips
(this example will be discussed later in section 4), the mode shape @V for all the sectors for
all the modes within the first pass-band will have no nodes along the spans of the beams;
@ for all the sectors for the modes within the second pass-band will have one node; ¢
for all the sectors for all the modes within the third pass-band will have two nodes;
and so on.

Using the notation of the direct product (or the Kronecker product), the generalized
co-ordinates of the whole system are given by the direct product of the kth column f® of the
Fourier matrix and the set of generalized co-ordinates of a sector @@

(p(i’k)zf(k)®(b(i)a l=1>aq k=13~~~,p5 (1)

where the Ith component of f% is given by f{* = 2k =DI=Ur | =1 p. The superscript
i in the expression @'¥ refers to the pass-band number, k refers to the mode number within
a pass-band; and [ in the expression for f{* denotes the sector number. The inter-bay phase
for the kth mode within a pass-band can be seen to be 2n(k — 1)/p. Note that as one goes
round the cyclic structure by one cycle, the phase shift is by an amount 27 as should be
expected since the phase of a point with respect to itself must be zero. Note that the total
number of degrees of freedom for the whole system is p times that for a sector. Also §? can
be a spatial function for continuum representation—then @®* is a vector of functions.

While a pass-band consists of a number of slightly perturbed frequencies clustered
around the degenerate frequencies, the story of the mode shapes of the mistuned system is
more subtle. The overall mode shape for the entire structure may not result in small changes
due to slight differences in the individual blades. The well-known phenomenon of mode
localization may be observed when one of the sectors has very large amplitude relative to
others.

A statistical study of a large population of coupled blade assemblies is of great practical
interest. A straightforward but prohibitively expensive approach is to use Monte Carlo
simulations and generate a large population of candidate structures (say, M) that are
nominally identical but slightly different. The computational resources required to carry
this out are enormous since an assembly involves a large number of degrees of freedom and
the total effort is multiplied by the number of individuals in the population. If g is the
number of degrees of freedom per blade; and if p is the number of sectors in the assembly,
the total number of degrees of freedom for all the sectors is N = p x ¢q. Generally, p«gq.
Therefore, a Monte Carlo simulation amounts to solving a problem of size N, M number of
times.

The work presented here is motivated by this application. One could use a method such
as the assumed modes method with the modes of the tuned system as the basis and work
out the frequencies and mode shapes for a mistuned system. In that case, p number of

tuned system mode shapes @, @9, ..., @} (of the complete structure) correspond to the ith
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pass-band of the tuned system and the mode shape of the actual mistuned system is given in
the usual way by

p
o= Y 0. @
j=1
where c; are the unknown coefficients. An appropriate variational principle can then resolve
the undetermined coefficients—there will be p number of combinations for each set
¢ j=1,...,p.

This will be a satisfactory approach as long as one does not observe localization. When
there is a combination of parametric perturbations such that it leads to localization, the
approach will fail to predict this since the mode shape (for the combined structure) will be
quite different from any one of the tuned system mode shapes and, therefore, a linear
combination of these will fail to produce the actual localized mode. In linear algebraic
terms, the actual localized mode will have a substantial component in the subspace
orthogonal to that spanned by the tuned system modes (that was considered as the basis).

To resolve this, an alternative way of defining the basis is proposed here. This, as will be
seen, leads to very substantial saving in computational effort while giving exceptionally
accurate “approximate” mode shapes and pass-band natural frequencies.

An assumption of the method developed here is that pass-bands are reasonably well
separated. This means that each pass-band is narrow compared to the neighbouring
band-gap(s) (or stop-band(s)). This is a reasonable assumption for most practical cases that
are weakly coupled. As remarked in the previous paragraph, the overall mode shape for the
complete structure changes substantially (from the corresponding tuned system modes)
when localization occurs. However, the crucial point is that the deformed shape of the
individual bays does not vary appreciably. This observation is used profitably in the method
proposed here. Moreover, the shape of each bay (that may have very different amplitude) is
pretty much the same as that corresponding to the shape of a sector for the tuned case.
Therefore, one can perform calculations for a pass-band by using just one mode shape as the
basis (in the spirit of the component modes, the interesting point being that each component
is now identical for a periodic structure). A most impressive part of the computational
economy offered by the proposed method is that M Monte Carlo calculations involve
solution of one single sector problem plus M number of Monte Carlo simulations—each of
size just p x p!

3. CALCULATION OF MODAL QUANTITIES FOR A PASS-BAND

An approximation is now presented for calculating the modal quantities based on energy
considerations and the Rayleigh method. The kinetic energy and the potential energy
expressions for the complete structure are given by

T(H)=La™ua, V() =L u"Ku, 3)

where u is the vector of the generalized co-ordinates of size N = p x g. For synchronous free
vibration, the existence of non-trivial motion requires

Ko = 1 Mo, “4)

which has N solutions for 4 and ¢. Equation (4) is computationally an expensive step
particularly for large systems (i.e., when N is large). It also happens to be an essential step for
most response calculations. It is an objective of this paper to present an economical method
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that replaces solution of equation (4) by a computationally cheap but reasonably accurate
calculation.

It is proposed to represent the deformed shape of the complete structure in the ith
pass-band by the following vector:

0 = {ar g™, ax ™, . a0 ®)

where Y is the ith mode shape of a single bay or sector (of course, in the absence of
mistuning). Equation (5) asserts that the generalized co-ordinates for the entire structure are
approximated by choosing a different scaling for each tuned sector mode shape and
stacking these co-ordinates one after another. The scaling factors a;, j = 1,..., p play an
important role in the analysis now, because they can be viewed as a new set of generalized
co-ordinates.

In other words for each pass-band only one assumed mode is chosen, i.c., one generalized
co-ordinate per subsystem. In the notation of the Kronecker product, one can write the
approximation of equation (5) as

¢’ =a®o", (©)

where a = {ay, a,, ..., a,}" is the vector of unknown coefficients a; yet to be determined.

The assumption of equation (5), (or equivalently equation (6)), amounts to imposing
a constraint on the possible deformation since it admits only special deformed shapes for
each sector. However, it may be claimed that the most crucial freedom required in the
problem is allowed—the amplitudes of the individual bays can be substantially different
(and of differing spatial phase)—these are afforded by the free parameters a;. The variational
principle “adjusts” these proportions in the best possible manner as guaranteed by the
Rayleigh method. It is interesting to compare equation (6) with equation (1). While the
phases are given strictly by the “fundamental phase” for a tuned periodic structure as in
equation (1); they can be quite different from these values when disorder is present. The
approach here is to resolve these unknown phases by the use of an appropriate variational
principle. The basic mode shape of an individual bay (it is assumed), remains approximately
unchanged if the disorder is small.

The mode shape for a sector or a bay Y may be an analytical mode shape or a mode
shape determined from an appropriate discretization for a sector. In the case of an
analytical mode shape, this needs to be treated as a function of spatial variables, else it is
a vector of the relevant generalized co-ordinates. In any case, given the deformed shape of
the entire structure as in equation (5), the total kinetic energy and the potential energy of the
system are quadratic forms in the unknowns a; and, therefore,

T(H)=1a™a, V() =La"Ka, )

where M and K are the coefficient matrices that depend on the structural parameters e.g.,
geometry and material properties. Equation (7) is an approximation for equation (3) since
the energy expressions in equation (7) result from “constraining” the system by allowing less
freedom than it actually has. Note that the size of M and K in equation (7) is much smaller
than M and K in the original expressions (3). For this reason we shall call M and K the
reduced mass and the reduced stiffness matrices respectively.

For synchronous harmonic motions, a(t) = a exp(iwt), the Rayleigh quotient R is written as

R="—". ()
a
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Applying the Rayleigh variational principle, the first variation of R must be set to zero, i.e.,
OR = 0. This requires that the first derivative of R with respect to each of the yet to be
determined unknowns must vanish, i.e.,

0R )
a—zO,]zl,...,p. )
aj

Since the numerator and the denominator of R are quadratic forms, application of
conditions (9) results in the following eigenproblems:

Ka = i1Ma, (10)

which is of substantially smaller size than the original eigenproblem (4) since p<pq. The
p number of solutions for / in equation (10) correspond to the square of natural frequencies
for the pass-band in question. The entries of the corresponding eigenvectors a can be
substituted into equations (5) or (6) to determine the mode shapes of the complete structure.
Typically, p may be of the order of 10-50 whereas g can be anywhere between a thousand to
tens of thousands, depending on the complexity of one sector and the level of sophistication
used in modelling it. However, note that we must solve one sophisticated problem for
a single tuned sector (i.c., a ¢ X g problem) to determine the fundamental mode shapes. The
real gain is in using equation (10) several times in a Monte Carlo simulation since it is an
inexpensive step.

An interesting feature of the method proposed here is that one does not need to calculate
all the natural frequencies for every pass-band. Calculations can be targeted to pass-bands
of particular interest. In practice, the first few pass-bands may be important for low-
frequency excitation. Alternatively, for rotating machinery, the frequency bands may be
chosen around the narrowband excitation frequencies corresponding to the rotational
speed. If the requirement is of calculating all the pass-bands (unlikely for most practical
situations), the method still offers computational economy—solving ¢ number of p x p
eigenproblems is substantially cheaper than solving a single eigenproblem of size pg x pq!

4. EXAMPLES, RESULTS AND DISCUSSIONS

First consider a coupled beam model of a cyclic structure where stiffness coupling is
provided in the plane of the disc. Assuming a doubly symmetric cross-section, torsion and
bending deformations are decoupled and, therefore, torsional motions will be kept out of
consideration, as they can be determined independently. Under these assumptions and
ignoring rotary inertia and shear deformation, the kinetic energy T'(t) and the potential
energy V (t) of the beam are given by

L L
(1) :TJ w2 dx, V(1) :EJ w2 dx, (11)
2 Jo 2 Jo
where the dot represents differentiation with respect to time ¢ and a prime represents
differentiation with respect to the spatial co-ordinate x along the beam, the mass per unit
length of the beam is m, the bending stiffness of the beam is EI and the length is L. Using
standard finite element methodology, the total energies can be expressed as a sum of
energies of the constituent parts (a procedure known as assembly) and a discrete model can
be built. The boundary conditions at the root are zero transverse displacement of the beam
and a (fairly stiff) rotational spring. This is to simulate the “fir-tree” structure and the
flexibility of the mounting of a turbo-machinery-blade fixity. In addition, the rotational
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spring provides an opportunity to simulate uncertainty (potentially, appreciably large) at
the blade root.

Since the model uses a beam idealization, the parameters that describe the blade
geometry and properties are few. Therefore, the results are presented in a non-dimensional
form—this also enables one to assess the effect of the relative strength of various parameters
on the results of interest. The stiffness matrix and the mass matrix are non-dimensionalized as

K* = K/(EI/L?), and M* = M/(mL). (12)
The tip coupling spring stiffness and the root torsional stiffness are non-dimensionalized as
k* = kyp/(EI/L?), and ki, = kyoi/(EI/L). (13)

Finally, the eigenvalues and the natural frequencies are non-dimensionalized as

it = J/(EI/mL*), and of = o/(/EI/mL). (14)

4.1. AN EXAMPLE OF SIX COUPLED BEAMS

Consider a model built on the basis of the approximations presented in section 3 with six
blades. When the non-dimensional coupling stiffness is kept as 0-05, the six degenerate
frequencies split into the corresponding pass-bands. The non-dimensional exact eigenvalues
for the first pass-band are calculated as 12:3620, 12:5619, 12:5619, 12-9611, 12-:9611 and
13-1604. The first of these is expected to be close to the non-dimensional eigenvalue for
a single beam. As this value is very close to the theoretical value for a fixed-free cantilever
beam (accurate to the third place 12:3596), it indicates that the rotational spring stiffness at
the root is high (kf, = 2:5 x 10°) and it simulates the fixed boundary condition reasonably
well. The value of the disorder is chosen as [0-5%, 2:5%, 7-5%, 4%, 10%, 5%] of k¥, and is
added to the root stiffness. Although these values are reasonably significant, the disorder
introduced is small since an appreciable change in an already very high value of stiffness
does not change the physical situation very much—the root is practically fixed before and
after introducing disorder. This is reflected by the fact that the disorder leaves the
degenerate doublets as approximately doublets. The same value of disorder (as a percentage
of the baseline value) is felt by the system more dramatically when the inter-bay coupling is
reduced. The other alternative is to reduce the baseline value of the root stiffness. Both of
these situations will be taken up later.

The width of the pass-band is about 6:5% of the fundamental beam frequency (from
12-3620 to 13-1604) indicating that the coupling is moderate as it spreads the frequencies by
an appreciable amount. The non-dimensional eigenvalues as computed on the basis of
approximations presented in this paper are calculated as 12-:3620, 12-:5620, 12-5620, 12-9620,
12:9620 and 13-1620. These values agree extremely well with the corresponding “exact”
values as they are all calculated correctly to the fourth place of decimal. Note that the first
frequency in each pass-band will be nearly exactly calculated and will be equal to the single
beam eigenvalues if the disorder is not too large. This is because the coupling springs are
practically inactive for this mode.

The mode shape for the first mode in the first pass-band is shown in Figure 1. The
individual blades are in phase as expected. The solid lines represent the actual deformed
shape using an exact analysis. The little dots are the mode shapes obtained from the
pass-band-based approximation proposed in this paper. The agreement is indeed extremely
satisfactory. This confirms that, in practice, the shape of individual blades is not greatly
different than the fixed—free beam modes.
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Figure 1. First mode shape in the first pass-band for the strongly coupled six-blade system. The solid lines (—)
represent the exact mode shape, the dots () represent the shape obtained from the proposed approximation and
the dashed lines (- - -) represent the undeformed state.
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shape in the first pass-band for the same system as in Figure 1. Same legend as in

The second mode of the first pass-band is shown in Figure 2. Note that the beams are not
all in phase, in fact, the amplitudes appear in the ratio 1:0-5: —0-5: —1: — 0-5:0-5 as
expected for this mode. The order of referring to the individual blades is counter-clock wise
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Figure 3. Second mode shape in the third pass-band for the same system as in Figure 1. Same legend as in
Figure 1.
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Figure 4. Third mode shape in the third pass-band for the same system as in Figure 1. Same legend as in Figure 1.

starting from the horizontal beam at the “three-o’-clock position” as beam number 1. The
approximate mode shapes are quite accurate again; some of the dots do appear to be sliding
off the solid line but the agreement is still very good. The same inter-bay phase relationship
is maintained for the second mode of the third pass-band but the individual beam shapes
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resemble the third mode of the fixed—free beam having two nodes each (see Figure 3). The
mode shape presented in Figure 4 corresponds to the third mode of the third pass-band. The
mode shapes in Figures 3 and 4 are very different but they represent a pair of
(approximately) degenerate modes.

Keeping the level of disorder as before, the coupling spring is rendered weaker now by
setting the value of the non-dimensional coupling stiffness as 5x 10~°. Weak inter-bay
coupling is not an unrealistic situation from practical standpoint—aerodynamic coupling
can be very weak. As expected, the non-uniformity in amplitude of the individual blades
starts showing up now. The first mode of the second pass-band is shown in Figure 5. Note
that second blade has larger amplitude than the rest. The width of the pass-band is very
small—the six non-dimensional eigenvalues span the range 12-:3620-12-3628. These values
are again recovered accurate to the fourth decimal place by the use of the approximation
presented in this paper. This is expected since the coupling is light. It is interesting to note
that the approximate and the exact mode shapes are almost identical and that it confirms
that, despite having different amplitudes for each arm of the structure, they all have the
same shape since the dots are generated by scaling the fixed-free cantilever modes in the
ratio a; dictated by the Rayleigh quotient minimization.

When the coupling stiffness is progressively increased, the accuracy in calculations using
the approximation of equation (5) is expected to deteriorate. For various values of the
non-dimensional coupling stiffness in the range 0-1-3-0 the percentage error in calculation
of the eigenvalues (defined as the magnitude of error as a fraction of the exact values) is
plotted in Figure 6 for the first pass-band. The first mode is calculated exactly and the
corresponding error is thus zero. The doublet of the second and the third modes is shown
using a solid line. The calculations are accurate within 2%. For the doublet of the fourth
and the fifth modes these errors are within 7% (dots on solid line) and for the sixth mode it is
within 10% (dashed line). Recalling the non-dimensionalization, k* = 3 corresponds to the

15 T T T T T
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5}

_15 L L L L L
-15 -10 -5 0 5 10 15

Figure 5. First mode shape in the second pass-band for the weakly coupled six-blade system. Same legend as in
Figure 1.
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Figure 6. The percentage error in the calculation of the eigenvalues (approximation) in the first pass-band of the
coupled six-blade system is plotted as a function of the coupling stiffness between the blades. The solid line (—)
corresponds to the doublet of the second and the third modes. The dots () on the solid line correspond to the
doublet of the fourth and the fifth modes. The dashed line (- --) corresponds to the sixth mode.

coupling stiffness being equal to the stiffness of a cantilever beam as felt at the tip, since the
tip deflection under a load F is given by (FL3*/3EI). In the light of this, the result indeed is
quite satisfactory since this should be regarded as a case of very strong coupling. For
coupling stiffness equal to 1/10th of the value of beam-tip stiffness, the worst cases of error
are well below half-a-per cent. These error values are for eigenvalues—for frequencies the
worst errors corresponding to Figure 6 (when the beam-tip stiffness is equal to the coupling
stiffness) will be only about 5% since frequencies are square roots of the corresponding
eigenvalues. When the coupling stiffness is about 1/10th of the beam-tip static stiffness, the
worst errors in frequency are thus well below a quarter of a per cent.

For moderately strong coupling, the width of the pass-band is moderately large. When
the value of the non-dimensional coupling stiffness was set to 1 and the disorder set to zero,
the exact non-dimensional eigenvalues are calculated as 12-:3620, 16-:3221, 16-:3221, 24-0054,
240054 and 27-7300. The corresponding values as computed by the use of approximation
(5) are 12-:3620, 16:3619, 16:3619, 243619, 24-:3619 and 28:3618. The width of the pass-band
is about 125% of the first eigenvalue in the pass-band. This indicates that the inter-bay
coupling is reasonably large. Despite this, the error in computing the last eigenvalue in the
pass-band is only 2-:28 % —a remarkable level of accuracy. This error is due to the fact that
the approximation assumes that the shape of the individual beams within a pass-band
corresponds to the fixed—free single beam shape. In practice, the tip spring will alter this
shape.
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Figure 7. The percentage error in the calculation of the eigenvalues (approximation) in the second pass-band of
the coupled six-blade system is plotted versus the coupling stiffness between the blades. Same legend as in Figure 6.

The increase in error with mode number within a pass-band is explained by the fact that
the lower modes see less relative energy storage within the coupling spring. Therefore, the
shapes of individual beams resemble those of the fixed—-free beam (the shape chosen to form
the basis) in most cases. For the first mode in a pass-band, all the tips are in phase resulting
in no energy storage in the coupling and, therefore, the individual beam shapes are exactly
the same as a fixed—free beam. For the last mode in a pass-band, all the tips are out of phase
giving maximum effectiveness of the coupling springs—this tends to change the shape of the
normal mode. For intermediate modes, some of the beams have their tips with ineffective (or
less effective) tip springs and others have more effective springs leading to shapes of
individual beams ranging from being close to a fixed-free beam to being close to
a fixed—-sprung beam.

Errors for the second pass-band are shown in Figure 7. The errors are seen to be
substantially less than the corresponding values for the first pass-band as shown in Figure 6.
The reason is that the coupling strength is effectively smaller for progressively higher
pass-bands. The reason for this diminished effective coupling with increasing pass-band
number will be explained shortly.

4.2. SPATIAL DECAY OF AMPLITUDE FOR A LOCALIZED MODE

To study the bay-wise variation in amplitude of a localized mode, the coupled beam
model of a 20-bladed system is presented next. While the six-bladed model was useful in
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Figure 8. First mode shape in the first pass-band of the coupled 20-blade system. The solid lines (—) represent
the exact mode shape, the dots () represent the shape obtained from the proposed approximation and the dashed
lines (---) represent the undeformed state.

understanding different phase relations within a pass-band, a larger number of bays is
required for a mode shape to resolve the decay of amplitude away from a high-amplitude
bay. The range of disorder studied varies from 0-5 to 5:0% of the baseline value of the root
stiffness. The first mode of the first pass-band is nearly unchanged due to the disorder and is
shown in Figure 8. For the same disorder, the first mode of the second pass-band is shown
in Figure 9 and the first mode of the third pass-band is shown in Figure 10.

Note the progressively increasing localization behaviour with the pass-band number.
This is because for the same level of disorder at the root, the tip coupling is stronger for low
pass-band numbers and weaker for high pass-band numbers as previously remarked. The
reason is the greater potential energy stored in the beam (relative to the potential energy of
the coupling springs) in the case of modes with high pass-band number: the mode shapes
have higher number of nodes now for each beam ensuring that the curve changes its sign
about the non-deformed state rapidly meaning that the curvatures are large, hence a larger
contribution to the total strain energy since the strain energy density for beams is
proportional to the local curvature of the beam (see equation (11)). The kinetic energy
expressions do not have terms that couple the adjacent beams. Therefore, coupling becomes
progressively weaker as we go higher up the pass-band number in the modal series due to its
progressively diminished contribution to the total potential energy. Because of the relatively
weaker inter-bay coupling for modes in the higher pass-bands, they are likely to localize
more. This explains the difference in the localization behaviour in Figures 8-10.

The increase in amplitude over successive bays for the three modes in Figures 8-10 is
presented on a logarithmic scale in Figure 11. Amplitudes for six blades (covering five bays)
are plotted such that the right-most blade corresponds to the largest amplitude blade. As
predicted by the theory of Anderson localization, these amplitudes show an exponential
spatial variation. On a logarithmic plot they are approximately straight lines. For the
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Figure 9. First mode shape in the second pass-band of the coupled 20-blade system. Mistuning and coupling
stiffness are the same as in Figure 8. Note the increased localization behaviour as compared to that in Figure 8.
Same legend as in Figure 8.
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Figure 10. Localization of the first mode shape in the third pass-band of the coupled 20-blade system. Mistuning
and coupling stiffness are the same as in Figure 8. Note the stronger localization behaviour as compared to Figures
8 and 9. Same legend as in Figure 8.
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Figure 11. The increase in amplitude over successive bays for the three modes shown in Figures 8-10is presented
on a logarithmic scale. They are plotted as a function of the bay number. The dots (), crosses ( x ) and pluses ( + )
represent the modes in Figures 8, 9 and 10 respectively.

second and the third pass-bands, the slopes are approximately equal to 8-2 and 21 dB/bay
respectively. The same number for the first pass-band is less than half dB/bay indicating
that it is a nearly extended mode. These Figures correspond to a decrease in amplitude away
from a localized blade at a rate of less than 6% reduction per bay in the first pass-band,
about 39% per bay for the second pass-band and over one order of magnitude per bay for
the third pass-band.

4.3. THE EFFECT OF SEPARATION BETWEEN PASS-BANDS ON THE APPROXIMATION

When the neighbouring pass-bands are well separated, the approximation proposed in
this paper is likely to work well. This is because each pass-band will have an associated
deformed shape for each bay which needs different scaling for different bays—the scale
factors, we hope, will be resolved successfully by the variational principle. When two
pass-bands come close to each other, the representative shape of the neighbouring
pass-band may significantly affect the deformed shape in a normal mode. This may be
particularly true for modes at the edges of a pass-band.

To explore the performance of the proposed approximation in this situation, a model of
cyclically connected beams that possess torsional degrees of freedom is now considered. The
cross-section of each beam is assumed to have a single plane of symmetry that is
perpendicular to the plane of the disc. In this case, the bending vibration out of the plane of
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the disc is decoupled from the in-plane bending and torsion. The bending motion in the
plane of the disc, however, is coupled to the torsional motion. This is the well-known case of
“double-coupling” for bending and torsion (see reference [24]). It can be shown that
bending-torsion coupling exists when the centroid of the cross-section and the shear centre
do not coincide.

Ignoring warping of the cross-section, the potential energy terms are modified by adding
a contribution from the twist deformation 6. The kinetic energy expression is given by

AL I (-
T(t):%J (v'—ecz)deJr%J 02 dx, (15)

0 0
where p is the density, A is the cross-sectional area, C, is the distance between the centroid
and the shear centre, I, is the second moment of area about the shear centre of the
cross-section. This can be expanded as a sum of three terms—one involving the squares of
transverse velocity, one involving the square of the rotational velocity and one involving the
product of the transverse and rotational velocities

ol L L
T(t) = Thonding + TJ 0?dx — Cszf 60 dx, (16)
0 0
where Tenaing accounts for the kinetic energy term proportional to ¥ and I, is the second
moment of area about the centroid. It is the third term that leads to bending-torsion
coupling. A finite element implementation was achieved by allowing a torsional degree of
freedom at each node of the finite element model discussed in the previous example.
Disorder was attributed to the root rotational spring as before. The potential energy
expression is now modified to

GC [t

V(t) = Vbending +— J 0/2 dxa (17)
2 Jo

where G is the shear modulus, C is the torsional constant of the cross section and Viepging

accounts for the potential energy term proportional to v'2. The following two non-

dimensional parameters

o= 1,/(AC?), B = GC L*/(EI C3?), (18)

will be used to present the results in this section.

The six-bay model will be considered here—the rotational stiffness of the spring at the
root is reduced to k¥, = 2:5x 10* to enhance the effect of disorder. The level of disorder is
kept as [0-25%, 0-125%, 0-375%, 0-2%, 0-5%, 0-25%] of the baseline value of the root
stiffness. The mode shape for a typical localized mode (first mode of the fifth pass-band) is
presented in Figures 12 and 13. The in-plane bending displacements are presented in Figure
12. The solid lines represent the exact mode shape and the dots represent the corresponding
bending displacements as calculated from the approximation. The torsional rotation is
presented for the same mode in Figure 13. The twist and bending displacements result from
a single eigenvector—the two have been shown here with independent normalization for
visual clarity. Again, the agreement for the twist is remarkable. Note that the slope of each
curve (in Figure 12) is approximately zero at the root as would be expected for a clamped
end of a beam. This slope will be exactly equal to zero if the rotational stiffness at the root
approaches infinity. The curves for the twist in Figure 13, however, do not show a zero
slope at each root as expected. This is because the only geometrical boundary condition for
this displacement field is no-twist at the root. The correct localization behaviour is
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Figure 12. Localization behaviour of the first mode in the fifth pass-band of the coupled 6-blade system having
inherent bending—-torsion coupling. The in-plane bending displacements are plotted against the spatial co-ordinate
along the blade. The solid lines ( — ) represent the actual mode shape, the dots (- ) represent the shape obtained from
the proposed approximation and the dashed lines (- --) represent the undeformed shape.
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Figure 13. Localization behaviour of the same first mode shown in Figure 12 and for the same system. The
torsional displacements are plotted here against the spatial co-ordinate along the blade. Same legend as in
Figure 12.
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Figure 14. The percentage error in the calculation of the eigenvalues (approximation) in the first pass-band of the
coupled 6-blade system having inherent bending-torsion coupling is plotted versus the coupling stiffness between
the blades. The solid line (—) corresponds to the second and the third modes. The dots (-) on the solid line
correspond to the fourth and the fifth modes. The dashed line (- --) corresponds to the sixth mode.

predicted by the approximation—one of the concerns with the performance of the proposed
method. It is interesting to note that the actual deformed shape (obtained from exact
calculations and shown using solid lines) for each beam is the same (with different scaling)
both for bending as well as the twist co-ordinate: an assumption on which the proposed
approximation is based.

Since the mode shapes for the complete structure as obtained from the variational
principle resembles the corresponding exact mode shape so well, due to the Rayleigh
stationarity principle, the corresponding eigenvalues (or the natural frequencies) agree with
the exact ones even better.

The bandwidth of the pass-band is narrow for the case of & = 20 and k* = 0-005 since the
inter-blade coupling is very weak. This was deliberately done in order to test the
performance of the proposed method for a mode that may localize (and this happens when
the inter-bay coupling is weak). When the coupling stiffness is increased, the percentage
errors increase and this dependence is presented for the first pass-band (the worst case
situation) in Figure 14. These may be compared with Figure 6 that corresponds to the case
without bending-torsion coupling. It is noted that this coupling worsens the performance of
the approximation slightly—from the worst error being about 10% in eigenvalue to about
15% (i.e., from being about 5% in frequency to about 7-5%).
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Figure 15. The second and third pass-bands of the weakly coupled 6-blade system are plotted versus the
non-dimensional parameter f that defines the distance between them. Inter-blade coupling is weak: k* = 0-005.
The solid lines (—) represent the exact eigenvalues and the dots (-) represent the eigenvalues obtained from the
proposed approximation.

With the intention of bringing two pass-bands close to each other and to test the
performance of the proposed approximation, the value of the non-dimensional parameter
p was varied while keeping the value of the non-dimensional parameter « constant. If the
bending and the torsional modes did not interact via coupling, the uncoupled bending
mode will remain unchanged due to a change in f. The eigenvalue for the torsional mode,
on the other hand, will increase linearly with an increase in f according to equation (17).
These two hypothetical lines will cross at (72/4)(B/«x) = 485-48 (the value of the second non-
dimensional eigenvalue for a fixed—free beam). For o = 20, the value of f§ to achieve this is
3931-2. In this way, one hopes to see the torsional frequencies being embedded inside
a pass-band that corresponds to a bending mode.

The second and third pass-bands are shown in Figure 15. On the left end, the upper
branch corresponds to a predominantly bending behaviour and the lower branch represents
a predominantly torsional behaviour. On the right end, the order is interchanged—the
linearly increasing upper curve represents torsional behaviour and the near constant lower
curve represents bending behaviour. This is a classic case of a pair of modes veering against
each other. Since the coupling is very weak, the pass-bands are narrow and when overlaid,
they are indistinguishable from a pair of veering lines. Note that the eigenvalues are quite
satisfactorily reproduced by the approximation—this is true even for the regions of close
approach of the two branches of the curves where there is no dominant torsional or bending
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Figure 16. The second and third pass-bands of the coupled 6-blade system are again plotted against f.
Inter-blade coupling is moderately strong and is increased to k* = 1-0. The horizontal dashed line corresponds to
the asymptote when the inter-blade coupling is ineffective. Same legend as in Figure 15.

behaviour and the modes are of truly mixed character. The reason for the success of the
approximation lies in the fact that the single beam modes chosen for the approximation of
equation (5) or (6) contains both torsional and bending information from the appropriate
eigenvectors of the single beam coupled bending-torsion problem; and this shape
does not change much even under the conditions of the two mode types coming close to
each other.

When the inter-bay coupling is increased to k* = 1-0, the pass-bands widen. The second
and third pass-bands are shown as a function of the non-dimensional parameter f in
Figure 16. The solid lines in each case represent the exact calculations and the dots are the
corresponding values as calculated by the use of the approximation. The two pass-bands are
seen to veer against each other as two groups of modes. The roughly constant groups of four
lines (representing six modes that include two doublets) at the two ends represent the
bending behaviour whereas the linearly increasing groups of modes that become narrower
and narrower at the ends correspond to the torsional motion. Although the two groups do
not ever cross each other, at the centre range of  values, the two pass-bands come quite
close to each other. As can be seen from Figure 16, the error (although small) is largest in
this region. The disagreement between the solid lines (exact calculations) and the dashed
lines with dots on them (the approximation) is maximum for the sixth mode for each group
around = 3900 (which is close to the expected value of 3931-2 when o = 20): it is less than
0-5% at worst.
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The horizontal dashed line corresponds to the asymptotic bending behaviour when the
inter-blade coupling is ineffective. This happens for the modes with lowest natural frequency
in each pass-band. For other modes, the bending asymptotes are still horizontal but the
levels are shifted to higher values—these have been omitted from Figure 16 for clarity.

5. CONCLUSIONS

A method of calculating the natural frequencies and mode shapes of a cyclically periodic
structure has been presented. The method leads to substantial computational saving by an
appropriate choice of generalized co-ordinates. This is achieved by using the component
modes for a sector as a basis and by calculating modal quantities for a pass-band at a time.
This has the advantage of affording results for a specific pass-band of interest and at
a substantially reduced computational expense—the modal quantities for a pass-band are
obtained from an eigenproblem of the same size as the number of sectors. For periodic
structures having a large number of degrees of freedom for each sector, this strategy offers
substantial computational economy; particularly, if one intends to carry out calculations for
a large number of cases that are nominally identical, ¢.g., when one is carrying out Monte
Carlo simulations for a large population of samples to gain statistical information.

The proposed method has been applied to a coupled beam model of a bladed disc
assembly. The accuracy achieved by the use of the proposed method is remarkable in most
cases for various combinations of disorder and coupling. This indicates that the formulation
of the model-order reduction allows for all the important degrees of freedom in the problem.
In view of the assumptions in the proposed method, this means that the scaling of amplitude
for each sector is perhaps the most important degree of freedom and the deviations of the
actual deformed shapes of each sector from the assumed ones are negligible. Treating
scaling for spatial amplitude as an appropriate degree of freedom results in a successful
prediction of mode shapes too, which is crucial for a good understanding of localization
behaviour. When applied to an example having each sector represented by beams that
possess coupled twist degrees of freedom in addition to bending, the method had been found
to be robust in terms of its performance. When two pass-bands (say, one corresponding
primarily to bending and one primarily to torsion) are brought close to each other, the two
groups of modes veer against each other. This behaviour is fairly accurately captured by the
proposed approximation.
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